
SESH & CompSoc
Docker

● The skills taught in these sessions allow identification and exploitation of security vulnerabilities in
systems. We strive to give you a place to practice legally, and can point you to other places to
practice. These skills should not be used on systems where you do not have explicit permission
from the owner of the system. It is VERY easy to end up in breach of relevant laws, and we can
accept no responsibility for anything you do with the skills learnt here.

● If we have reason to believe that you are utilising these skills against systems where you are not
authorised you will be banned from our events, and if necessary the relevant authorities will be
alerted.

● Remember, if you have any doubts as to if something is legal or authorised, just don't do it until you
are able to confirm you are allowed to.

● Relevant UK Law: https://www.legislation.gov.uk/ukpga/1990/18/contents

The Legal Bit

https://www.legislation.gov.uk/ukpga/1990/18/contents

● Before proceeding past this point you must read and agree to our Code of Conduct - this is a
requirement from the University for us to operate as a society.

● If you have any doubts or need anything clarified, please ask a member of the committee.

● Breaching the Code of Conduct = immediate ejection and further consequences.

● Code of Conduct can be found at https://shefesh.com/conduct

Code of Conduct

https://shefesh.com/conduct

Later on in this session, we will be using software called Docker Desktop which can be downloaded on
Windows, Mac and Linux here: https://www.docker.com/products/docker-desktop/

Downloading Docker Desktop

Hover over the arrow
for OS options

Downloading
docker via CLI:
https://docs.docker
.com/engine/install
/ubuntu/

https://www.docker.com/products/docker-desktop/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

● Docker is a containerisation platform that packages an application and its dependencies together
inside of an image.

● Docker enables you to separate applications from infrastructure to increase the efficiency of
delivering software.

● A container provides a self-contained environment for running applications and software.
● Containers are isolated from one another and underlying infrastructure so they can run in any

environment.
● Containers are alternatives to using virtual machines as it uses fewer resources and runs on top of

the host’s OS.

What is docker

Why you should use docker

● Provides portability across different machines as you can deploy containers to any other machine
that runs Docker

● More efficient than virtual machines as they do not contain an OS
● Development process of applications and software is more fluid
● Docker containers allow for faster delivery of software updates and rollbacks
● Can also repair applications without completely taking it down
● Containers provide an isolated environment so all required resources self contained to prevent

disturbing or depending on another container
● Easy to install and use

Companies that use docker:
● Paypal
● Adobe

You can use Docker on any machine that can run docker for a range of things such as:

● Software prototyping and packaging
● Network modelling
● Continuous integration and delivery
● Running multiple containers on the same machine
● Databases (you can keep data by binding Docker to a volume which will be discussed later)
● Early application development
● Pre-deployment testing

Where you can use docker

● Provides GUI for Docker by creating a linux VM on your OS and forwards docker CLI commands to
the VM

● Lets you manage containers, images and volumes whilst reducing the time spent on setting up so
you can focus on writing code

● A Docker image is a read only blueprint providing all instructions necessary to create a container
(allows for multiple containers that do the same thing)

○ Images are identified by tags (like branches in git)
○ author/name:version
○ Some official images will not have an author (like hello-world)

Docker desktop

Benefits of using Docker CLI:

● Full control of containers
● Allows for more in-depth customisation of configuration for containers/images
● Allows users to automate container management tasks
● Easier to integrate with automaton tools
● Manage Docker containers from your IDE of choice
● Has third party add-ons such as Fig.io

Disadvantages:

● Potential for security risks if not used properly
● Can be harder to debug
● Limited visual feedback for applications that need it

Docker Command Line

We will show
certain CLI
commands like
this

The hello world container can be found here: https://hub.docker.com/_/hello-world/

hello-world
For CLI:
sudo docker run
hello-world

https://hub.docker.com/_/hello-world/

Pulling Images
● Images for containers can be large (those doing the IoT module will know)
● Images are pulled from a hub/registry and cached on the device

○ Many images are based of others which saves time if already downloaded
● Docker hub is main one for docker but you can host private hubs

○ Hubs and caches require configuration and upkeep

Pulling and Registries and Caches

Pull image from
Docker Hub

docker login [DOCKER-REGISTRY-SERVER] -u <username> [-p <password>]

Images are standardised packages that contain all the files, libraries and configurations needed to run a
container

Once built, Images are Read-Only - but can be shared, versioned, and deployed as containers.

Can be pushed to docker hub, allowing others to pull them and use them

Bit like Github repositories - other users can pull and use apps created by someone else

- Docker pull <container-name>
- I.e Docker pull python3

Images

Layers and SBOM (Desktop)

Layers (CLI)

Caches
● You might not want to host a private hub (public image but slow speeds)
● Cache keeps a local copy of requested images

○ Image requested from cache
○ If not kept requested from hub and stored
○ Image sent to user

Pulling and Registries and Caches

Pull image from
Cache

If image not in
cache, get it from
the hub/registry

● YAML file
● Allows for creation of many resources at once:

containers, volumes, networks etc.
● Compared to long command, easier to:

○ Create
○ Understand
○ Execute

sudo docker-compose up -d [NAME]

Docker compose

Container file system works like normal computer - this is lost when container is removed

For permanent storage:

● Bindings: Folder in container synced to folder in host system
○ Like a shared folder in a VM
○ Easy to access files in host system (manually or other software)

● Volumes: Storage area/drive only for docker
○ Bit like a USB drive
○ Can be shared between containers
○ Slightly better performance

Storage

● Docker containers are put on their own little subnet
● Can be networked together
● Most common is forwarding ports from the host

○ -p host:container

Can connect to other peoples docker containers

- Multiple servers can be hosted on one device
- Game servers, web servers, etc

Networking

Dockerfile

The Dockerfile is the centerpiece of Docker, it is
one of the scripts that tells the Docker daemon
how to construct our containers.

Docker uses a combination of its own syntax and
also bash to setup the environment.

- FROM - Specify the base image to use,
e.g. ubuntu or flask

- COPY - Copy files from the host to the
container

- RUN - runs a command as a user, by
default it runs as root in bash

- WORKDIR - Specify the working directory
- USER - Specify the user to change to
- ENV - Set an environment variable
- EXPOSE - Allow a port to be connected to
- ENTRYPOINT - The script to run once the

container has started

● Scaling
● Load balancing
● Failures/portability
● Secure communication
● Easy deployment including

across environments

Kubernetes is an open source
container orchestration tool.

Works on containers being
microservices where they do a
very specialised role.

Orchestration

Update and give minimum permissions.

Misconfiguration:
● Ports/Networking - access to network potentially including the host, other containers and other

devices
● Volumes - shared storage with other containers
● Bindings - shared storage with host

Breaking the container - (next slide)

You may also be able to find dockerfile or docker-compose.yml files that leak credentials

Docker uses the hosts kernel so if there is a vulnerability in that then the host will be accessible

Security

You can find best practices here: https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html

If you are a member of the docker group, then you can easily gain root by exploiting the volumes ability to
mount the host operating system to a container.

If the docker socket (find / -name docker.sock 2>/dev/null) is mounted inside the container you can use it
to escape.

Running a docker container with --privileged can allow the container to interact with host ports,
capabilities and overall lead to code execution on the host as root.

And more…

Articles: CVE-2019-5736 (https://unit42.paloaltonetworks.com/breaking-docker-via-runc-explaining-cve-2019-5736/), Privileged
Flag Exploit Example (https://0xdf.gitlab.io/2021/05/15/htb-ready.html#shell-as-root-host), CVE-2019-5736 Example
(https://0xdf.gitlab.io/2021/07/31/htb-thenotebook.html#shell-as-root),
https://book.hacktricks.xyz/linux-unix/privilege-escalation/docker-breakout/docker-breakout-privilege-escalation

Vulnerabilities

https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://unit42.paloaltonetworks.com/breaking-docker-via-runc-explaining-cve-2019-5736/
https://0xdf.gitlab.io/2021/05/15/htb-ready.html#shell-as-root-host
https://0xdf.gitlab.io/2021/07/31/htb-thenotebook.html#shell-as-root
https://book.hacktricks.xyz/linux-unix/privilege-escalation/docker-breakout/docker-breakout-privilege-escalation

If you are testing a networked service like a game server, you should be able to connect to other people’s
machines.

To get your IP address you can run ‘ipconfig’ (Windows) / ‘ifconfig en0’ (mac) / ‘ifconfig wlan0’ (linux)

Other people can now connect to your linux container by going to YOUR_IP:PORT, where the port is the
port of the docker container you exposed

Connecting to other people’s containers

Create a new folder (Docker-Flask)

Create three files

● app.py
● dockerfile - must be lowercase
● requirements.txt

Practical

Requirements.txt

● Add the word ‘flask’ and
save the file

App.py

● Customise the message
● Remember the value you

set port to

Practical

dockerfile

● Using slim version of
python to make
containerising quicker

● Not quite done yet

Practical

Terminal

● Move into the directory of your project
○ cd

● Run this command to build the docker container
○ Creates the image from the dockerfile with the ‘tag’ python-docker

● Run this command to
○ -d -> run in detached mode so we can still use the terminal
○ -p -> maps port 8067 on our device (use whatever value you set previously here) to an

external port (doesn’t have to be the same)
○ ‘Python-docker’ <- tag for the docker image

Practical

● Run a more interesting container:
○ itzg/minecraft-server
○ wordpress
○ httpd
○ Find one that interests you…

● Create your own Dockerfile
○ Using your own web and internet project upload and connect to each others

Ask us for any help or questions you may have.

Be careful what you host. Ask peoples permission before connecting to things.

https://docs.docker.com/get-started/

More Practical

https://docs.docker.com/get-started/

CompSoc Upcoming Events:
AGM - Wednesday 2nd April

Kubernetes Workshop - Wednesday 30th April

Summer Ball - Friday 16th May

Upcoming
Sessions

What’s up next?
www.shefesh.com/sessions

shefcompsoc.uk/events/

http://www.shefesh.com/sessions
https://shefcompsoc.uk/events/

Any Questions?

www.shefesh.com
Thanks for coming!

